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ON THE STABILITY OF THE MOTION OF A VISCOELASTIC RING 

IN A GRAVITATIONAL FIELD* 

D.M. KLIMOV, A.P. MARKEYEV and O.V. KHOLOSTOVA 

The motion in a circular orbit of a thin, homogeneous, unstretched 
viscoelastic ring in a central Newtonian gravitational field is 
investigated. An approximate non-linear system of differential 
equations is written out which describe the quasistatic state of motion 
of the ring relative to the centre of mass. A stability condition for 
the rotation of the ring in the plane of the orbit at an angular 
velocity which decays i magnitude is obtained in the first 
approximation. The asympto ic stability of the relative equilibrium of 
the ring in the orbital co rdinate system when the ring lies in the 

B 
plane of the orbit is prov d, together with the instability of this 
equilibrium when the plane of the ring is perpendicular to the velocity 
vector of the centre of mass. 

1. Let us consider the motion in a circular orbit of a homogeneous unstretched circular 
ring of constant cross-section in a central Newtonian gravitational field. The linear dimen- 
sions of the transverse cross-section of the ring will be assumed to be small compared with 
the radius r of its central line. We will denote the density of the ring by e, F is the 
area of the transverse cross-section, EI is the flexural rigidity and n = 2nrFo is the mass 
of the ring. 

Let O.z,r,z, be the coordinate system formed by the principal central axes of inertia 
of the undeformed ring with the x 3 axis perpendicular to the plane of the ring. The position 
of an element dm of the undeformed ring is specified by the angle a measured from the x1 axis. 

We shall consider those motions of the ring relative to the centre of mass when its 
elastic vibrations are flexural vibrations in the plane of the ring /l/. We will specify the 
position of an element dm of the undeformed ring by a radius vector p relative to the point 
0, where p=g+u, where g = (x1, 4, ma), x1 = rcos CC, z% = r sin CL, z3 -= Cl and u is the elastic 
displacement. We shall represent the vector-function u(g,t) in the form of a series in the 
orthonormalised characeristic modes of the free elastic vibrations of the ring. In the case 
of planar flexural vibrations, this series has the formi'?i 

” = 5 q;(t) u”“’ + qn”(t) U”‘“’ 
n==2 

1 I 
ncosnacosa+ sinnasina 

U'(") = J/ m ("fL *) ncosnasina-ssinnacosa 
0 1 

il 

nsinnacosa-ccosna sine' 

u”(“) = v m @*y 1) nsinnasina+G09ncz c0Sa 
0 / 

(1.1) 

(1.2) 

In the case of free vibrations, the quantities qn’ and q,,” satisfy the equations for 
harmonic vibrations with frequencies 52, which are given by the equalities 

n 2 = Er(na - 1)a.a 
n oFr"(na+l) (n = 2,3,...) (1.3) 

The internal frictional forces which arise for arbitrary displacements of the elements 
of the ring will be simulated using a Rayleigh dissipative function of the type 
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p = const > 0 (1.4) 

where x is a dimensionless parameter and differentiation with respect to time is indicated 
by a dot. 

We shall specify the position of the ring in absolute space using the orbital coordinate 
system 0X,X,X,, the X1,X, and X, axes of which are, respectively, directed along the 
transversal to the orbit, along the binormal and along the radius-vector of the centre of mass 
0 with respect to the centre of attraction. We will specify the orientation of the coupled 
coordinate system or,%% relative to 0X,X,X, using the Eulerian angles Ip, 8 and cp. 

A system of equations for the motion of a ring relative to the centre of mass has pre- 
viously* been obtained which includes the equations of motion of the ring as a whole (the 
motion of the coordinate system Or,xg, relative to the orbital coordinate system) and the 
equations of the elastic vibrations of the body in the 0x,x,x, coordinate system. 

Let us assume that the ring possesses a high rigidity and the decay of its free elastic 
vibrations occurs during a time which is much less than the period of rotation of the centre 
of mass along the orbit. Assuming that the latter quantity is of the order of unity, we 
introduce a small parameter e by putting that the quantity @dQa is of the order of E(WP 
is the average motion of the centre of mass). The above-mentioned assumption means that the 
inequality 0< x< e< 1 is satisfied which enables one just to consider the quasistatic 
state of the motion of the ring /2/ over time intervals of the order of unity and greater. 
This quasistatic state corresponds to its forced elastic vibrations under the action of gravi- 
tational forces and inertial forces. 

Under the assumption that x - eb (1 < 6 < 2) , it is possible to obtain (see the second 
footnote) the following system of differential equations which describes the motion of the 
ring as a whole relative to the centre of mass in the quasistatic state of its elastic vi- 
brations: 

9" sin (3 + 9'3' 00s 3 -+’ sing 00s e - 8’ cosq sine - (b + q’)c = 
(~4, + l/sxA,) sin 28 + I/, [(3pB, - 2x4) a - 3pBB,’ + 2xB“l 

e~+g'~0s~-3sin8c0se+(b+~')d=sin0cose(~~,+*/~~~~)+ 
‘/&3pB, - 2x&) a + 3pB,’ - 2%&‘1 

(1.5) 

(1.6) 

cp’ = -a' - Yp x [9$ sin' 8 - 9sinY 9 cos e d - 3 sina e0 (c* - da) + 
6cd sin 8 cos 3 8' + 3 sin 3 00s 9 d (c* + da) - b (c” + dz)Y 

(p = 27eb,* / (ioh,*), 1c = 81XEa@00Y / (5hz2)) 

(1.7) 

Quantities of the order of E& and higher have been discarded in Eqs.(1.5)-(1.7), dif- 
ferentiation with respect to the variable 'c = oat is denoted by a prime and the following 
notation is adopted: 

a = g'cos 9 -- cosII) sin 9, b = ‘p’ + a 

c = 0’ + sing, d = 9’ sin 3 + COST cos e 

-4, = cd, A, = 3 sin2 Bcp' - b (c* - da) - 3 sin e ~0s ed 

A, = 3 sin2 e f (c* - d2), Al = 2bcd - 3 sin e cos 8 (et + c) 

4 = -c (3sin’ e + c2 f S), B, = A,d + A,c 

B, = d (c* + de - 3sin* e), B1 = -_A,c + A&d 

(W 

(1.9) 

(1.10) 

In (1.5)-(1.7) and subsequently, the notation 9, = E-I& is introduced for the lowest 
frequency of the planar free flexural vibrations of the ring. We note that, in quasistatic 
states, its planar flexural vibrations corresponding to the lowest frequency Q2, are the only 
substantial motions of the ring. 

2. The system of Eqs.(1.5)-(1.7) has the following particular solutions: 

$ = n, e = nl2, f$ = qole-x~ (2.1) 
rl = n, e = n/2, ‘p’ = 0 (2.2) 

9 = n/2, e = n/2, cp’ = 0 (2.3) 
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In the case of (2.1), the ring is located in the plane of the orbit and rotates around 
the normal to the plane of the orbit at an angular velocity which dezeases in magnitude. 

The relative equilibrium of the ring in the orbital system of coordinates, when its plane 
lies in the plane of the orbit corresponds to solution 12.21. 

In the case of (2.31, the ring is also located in an equilibrium position in the orbital 
coordinate system and the plane of the ring is perpendicular to the velocity vector of the 
centre of mass (the ring is arranged in a plane passing through the normal to the plane of 
the orbit and the radius-vector of the centre of mass of the ring relative to the centre of 
attraction). 

The stability of the motions of the ring corresponding to solutions (2.1)-(2.3) is in- 
vestigated below. 

2.1. In the case of an absolutely solid ring (E = 0) the motion 12.1) is stable when 
'PO'< -2 or 'pl>---liz and unstable when -2< "pO‘< --'f,f3, 4/. In the case of a 
visco-elastic ring (a # 0, X # O), we shall confine ourselves to an investigation in the 
first approximation. Let us put % =n/2 +z,rl] = 76 $ y, 'p' = (po'eWxr -t-z. The linearized system 
of equations describing the perturbed motion will be 

5” + 4s + 2tp,‘e-x7 (1 - IL) (y' + I) - */9X(pO'e-XT (4fpg'e-xt + 1) (y - 
z') = 0 

(2.4) 

y" + y + 2cp,'e-Xz (1 + p) (y - I‘) - Y, %tpO'e-XX (4~pBte-xz -i_ 1) (5 + 
y') = 0 2' = --xz 

We will now make use of the Lyapunov theorem on the stability of motion /5/ and select 
the Lyapunov function V in the following form (see the reference in the second footnote): 

(2.5) 

By virtue of the equations for the pertubed motion (2.4), its derivative V’ has the form 

Y' = 'la (a,'~~ + a,'@ -j- b,xlZ + b,y’%) - xz2 (2.6) 

b, = (1 + 4) a&', b, = a4 

The function ah @) can be taken as being arbitrary but such that the conditions ah > 
q> 0, a: < 0 (q = const) are satisfied. If, in addition to that, constraints which are 
specified by the inequalities al> 0, a, > 0, a,' < %, a,' < 0 are imposed on the quantity 'po', 
the function Q will be positive definite and its derivative V’ will also satisfy the require- 
ments of the Lyapunov stability theorem by virtue of the constancy of its sign, which is 
opposite to the sign of V. 

For example, let us put al =X t e-'. Then, an analysis of the above-mentioned inequalities 
leads to the following sufficient condition for the stability of the motion (2.1) for 
small values of the parameters E and x: 

qJpo' > -I/* "- t/z ([l-l X) (2.7) 

2.2. To investigate the stability of the motion (2.21, we put % = n/2 -i-x, 9 = n -.- y. 'p' = 
z . The equations for the perturbed motion can then be represented in the following form: 

Here, 0, is the set of terms of not less than the fourth power with respect to x, y, m', 
y', 2 and, we denote by f,,g, (i = 1, 2) the following third-degree polynomials: 

ft = 62 (x + y’) f 8xy* -+ Zy=y’ - 22x& - 4x'yy' + 8x3 + 18x2y' + 
12xyy'= + 14xP -+- 2y'" $- 2Py' 

g, = 6z2 (y - z') + 2y" - 9&z - 19Sy + 2yy'Z + 4ryy' + 153?y + 
28xQ' - 1Oxs'y' - 5x'y'" - 8x'" 
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fz = 62 (5’ - y) + 2ys - 6s’y2 + 2s2y + 4zzyy’ + 2yy” + 6x’“y - 
82% - IOmz’y’ - ZZ’~‘~ - 2x’” 

g, = 6z2 (x + y’) - llxyzy2 - 2y*y’ + 222~~’ + 4r’yy’ - 28s” - 45~“~’ - 

15xy’2 _ 8xs’2 + 2’2~’ _ 2~‘” 

The problem of the stability of system (2.8)-(2.10) belongs to the critical case of one 
negative and two pairs of purely imaginary roots. In order to solve this problem we shall 

make use of the "information principle" in the theory of stability /5/. 
Let us make the change of variables z-5 in system (2.8)-(2.10) which anihilates 

terms of the second degree on the right-hand side of Eq.(2.10) which only contain the critical 
variables I, y, I' and y'. We will seek a change of variables in the form 

z = % + a1122 + 2m,,xy + 2u,,xx' + 2U,@Y' + U,,Y2 + 2U,,YS' + (2.11) 

2U,lYY’ + u# + 2kX’Y + UuY’2 

After the change of variables (2.11), Eq.(2.10) must take the form 

%' = -2% (sy - Czr') - 2p% (xy - 25') -x% (1 - 233 + O& (2.12) 

It can be verified that the quantities uij satisfy a certain system of linear equations. 
The solution of this system, with an error of the order of (xE')*, has the form (see the 

reference in the second footnote) 

I 19 
U11= x-' U18 = 0, 

1 5 u,,=$j-;x, l&=-y, uz2== (2.13) 

After the change of variables (2.11), Eqs.(2.8) and (2.9) become: 

X" = -42 - 2% (5 + y') + h, + '/#F, + "l,xG1 + OI 

Y" = -Y + 2% (6y + 5') + A2 + '/apF, + V&G2 + 01 

where 

h,= -&xya-+y2y’ +~~s-~~“2y’_~xy~~+$xx.~+ 
$ y’s + _lx,ay 

h,=-~y~+~y~x~-~xJ2y+$yy’~+ $yx,4+ 

+x=x’ + Zxz’y’ - $“~y’a _ $x,3 

FI = ‘3% (I + y’) + F,*, G, = 6%* (y - z') + Gr* 

Fz = -6% (Y - 5') f Fz*, Gz = 6%* (x + y’) + G,* 

F:== + xy2 + + y2yp - 22~~s’ - 4yz’y’ + + zs + + “sy, + 

$. xy’s + L;A &Z + $ y’3 + ; x!ey’ 

C:= 2y3 - 9y2S’ + + yy” + $ xyy’ + 15yr” + _$ ~2~~ __ 

313 
16 zx'y'-1 Ix'y"- 8~'~ 

F:= -+ ys- +y"z' ++zY -2zyy' + +yy,'+ +yx~~_ 

19 3 + x=x' - 4&y’ - ; “,Y’P _ s x1 

c:= - ilXy2 - + y’y’ + g xyx' - + ydy’ _ 2&S _ 4522y' _ 

15xy'*-+'~_2y'3 + 7r'*y' 

(2.14) 

(2.15) 

(2.16) 

The "contracted" system, which is obtained from Eqs.(2.14), if one puts % =0 in these, 
has the form 

fl = -4s + h+ o,, y" = -y + 'p.2 + 0, (2.17) 

‘pi = hi + ‘/+F$* + */,xGi* (i = 1, 2) 
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The problem of the stability of the "contracted" system (2.17) belongs to the critical 
case of two pairs of purely imaginary roots. In order to solve it we shall use Kamenkov's 

algorithm /6/. First, it is necessary to obtain the normal form /I/ of the system (2.17) up 
to terms of the third power inclusive and than to transform to the polar coordinates pi, @(i = 

1, 2). When there are no 1:2 and 1:3 resonances, the stability conditions are expressed in 
terms of the coefficients of the right-hand sides of the equations for p1 and pz. 

Since there are no second-order terms in (2.17), the 1:2 resonance which is present in 

the problem being considered does not affect the structure of the normal form and the equations 
for p1 and pz can be obtained in the following manner. Let us make the change of variables 

2, y, x', Y' + Pl? PZ? 81, 82 according to the formulae y = p1 cos 8r, y' = --pl sin 8r, x = pz cos e2, 5' = 

-2p, sin 8%. 
If the terms in O4 are dropped from system (2.17), then, in the new variables, it can 

be written in the form 

pr' = --'pz sin el, pz' = --I/p(pl sin e,, 8,' = I - P1-l'p2 oos e,, 8,' = (2.18) 

2 - l/ePa-r~l cos ea 

By averaging the right-hand sides of the first two equations of (2.18) with respect to 

8, and 8%, we obtain the required equations for ~1 and P%: 

5i' = 5i (s15, + sz5,) (i = 1, 2) (2.19) 

(5i = pi*, cl1 = -35x/72, Cl2 = --17x/9, CPl = -20x/9 

cz2 = --1145x/288) 

According to the Kamenkov criterion, the "contracted" system (2.17) is asymptotically 

stable and this conclusion is independent of terms higher than the third order on its right- 
hand sides. Also, since the series expansion of the right-hand side of Eq.(2.12), calculated 

when s = 0, commences with terms of not less than the fourth order, it may be concluded on 
the basis of the "information principle" that the full system (2.8)-(2.10) and the motion 
(2.2) which is being considered are asymptotically stable. 

We note that, in the case of an absolutely rigid ring, the motion (2.2) is simply 
Lyapunov stable /3, 8/. 

2.3. In order to investigate the stability of the motion, which corresponds to the sol- 

ution of (2.3), we put 8=+++s,$=++Y, cp'=Z. The linearized system of equations of 

the perturbed motion will be 

Z" + 3 (1 - 2/$k) I + */,xX' = 0 (2.20) 

Y" - (1 - 2/&) Y - =/$y' - (2 + ~/.+)a = 0 

z' + y' +4/,x(22-Y) = 0 

The characteristic equation of system (2.20) has two pairs of complex conjugate roots 

A,,, = -l/,x & i n (1 - Yap) + 0 (.?), A,,, = --x * i (1 + p) + 

0 (4 

and a single real positive root 

h, = 16/9x + 0 (Ed) 
. 

The relative equilibrium of the ring being considered is therefore unstable. 

We note that, in the case of an absolutely rigid ring (E = 0), the solution of (2.3) 

corresponds to the special case to a hyperboloidal precession which is Lyapunov stable /8/ and 
this follows from the fixed-sign property of the energy integral in the neighbourhood of the 
solution of (2.3). The presence of internal viscosity (x#O) in the material of an elastic 

ring (Ef 0) destroys this stability and the motion becomes unstable. 
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SLIPPING REGIMES IN MECHANICAL SYSTEMS* 

S.V. ZUBAREV 

Mechanical systems with non-bilateral kinematic constraints are 
considered. For such systems conditions are obtained for which their 
equations of motion, determined by methods from classical mechanics, 
convex underdetermination and equivalent control, are identical. 

Problems associated with methods of obtaining the equations of motion in slipping regimes, 
appearing in systems of differential equations with discontinuous right-hand sides, have been 
most thoroughly discussed in /l, 2/. From the point of view of classical mechanics, the 
appearance of such regimes amounts to imposing on a system of material points P,,(i= 1,2,.. ., NJ 
some non-bilateral relations sg (b = 1, 2, .( m) 

SR = ‘PO (t, r, r’). r = (Q, ., TN), r’ = (rl., ., rN’) (0.1) 
where r, and pi are respectively the position vectors and velocities of the points P,. 

In this context slipping motion corresponds to motion in which the constraints Sg become 
bilateral during certain modes of behaviour, i.e. Sg= 0. Then the right-hand sides of the 
dynamical equations for the points P, undergo discontinuities on the hypersurfaces SR = 0. 

Below we shall assume that when the links are bilateral (embedding), they are ideal. 
This assumption is natural for a wide class of mechanical systems, 

For example, 
/3/. 

such a situation occurs when Sg is a non-bilateral frictional constraint 
If the constraint (0.1) is ideal (in the above sense) and linear in the velocities, then 

to derive the equations of motion for the points PI of a constrained system one can apply 
Lagrange's method of undetermined multipliers (alternatively, the method of convex under- 
determination and equivalent control /l, 2/l. However, any one of these approaches in iso- 
lation may not give sufficient information for investigating the behaviour of such systems 
with variable structure. In particular, the Lagrange method, uniquely defining the slipping 
equations, does not, in general, establish their switching conditions, whereas the methods in 
/l, 2/, in principle giving conditions for the existence of singular regimes, in a range of 
cases do not guarantee the correctness of the derivation of the equations of motion when the 
constraints SR are bilateral. 

In connection with these and other problems there is the interesting problem of the con- 
sistency of the various methods of deriving equations of motions for slipping regimes for 
mechanical systems of variable structure within the framework of Newtonian mechanics. 

1. We will first consider a dynamical system of the form 

*PrikZ.Matem.Hekhan.,55,1.26-31,1%x 


